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Overview 

 Lagrangian hydrodynamics of two materials in 1-D 
•  Two material, one-velocity model leads to a closure problem. 

 
 Three different staggered-mesh discretizations 

•  The approaches used in computations are presented. 

 Several different closure models 
•  All use pressure relaxation in the mixed cell as a physically-

motivated assumption. 
 
 Comparison of computational results 

•  Pressure equilibration behavior for two test problems 
 
 Summary and conclusions 

“Das Ziel der Wissenschaft ist einerseits, neue Tatsachen zu erobern, 
andrerseits, bekannte unter höheren Gesichtspunkten zusammenzufassen.”   

Sophus Lie, Gesammelte Abhandlungen, B.G.Teubner, Leipzig, 1934. 
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Two-material Lagrangian hydrodynamics in 
1-D presents several open issues. 

 Conservation laws govern the flow of inviscid, non-heat-
conducting, compressible fluids in the Lagrangian frame: 

Mass: 

Momentum: 

Energy: 

Equation of State: 
(EOS) 

•  Test — rigorously — fundamental algorithms 
•  Quantitatively evaluate algorithm performance 
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 With 1-D equations, we can: 

 With 1-D models, we cannot necessarily extend to 2-D. 
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We make some simplifying assumptions. 

 There are two materials. 
•  Two materials cells (almost) certainly occur during the remap 

of a multi-material ALE calculation. 
•  Modeling of two materials requires much more care than one 

material simulations. 
•  Modeling of two materials does not imply an unambiguous 

method for model three (or more) materials.  
 These two materials are described by one velocity. 

•  This implies — either implicitly or explicitly — that a sub-grid 
model describes the mixing of the materials within each cell. 

•  This differs from more sophisticated, multiple velocity-field 
models that are used, e.g., for two-phase flow. 

 We focus on closure models for pressure equilibration. 
•  We do not discuss here the important issue of artificial viscosity 

models for multiple-material cells.* 
* See: Yanilkin, Yu.V., Study and Implementation of Multi-Material Pressure Relaxation Methods for 

Lagrangian Hydrodynamics, Los Alamos National Laboratory report LA-UR-10-06664, 2010. 
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Algorithm I uses the following predictor-
corrector approach*. 
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* Yanilkin, Yu.V., Study and Implementation of Multi-Material Pressure Relaxation Methods for 
Lagrangian Hydrodynamics, Los Alamos National Laboratory report LA-UR-10-06664, 2010. 

Adiabatic 
update 
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  In the predictor, the change is to the pressure update. 

This algorithm changes for multiple materials. 
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•  With the following relations, Bondarenko & Yanilkin*  showed 
that total energy is conserved in this approach: 
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•  Pressure predictor update:  
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*  Bondarenko, Yu.A., Yanilkin, Yu.V., “Computation of thermodynamical parameters of the mixed cells in gas dynamics,” 
VANT (Mathematical Modeling of Physical Processes) 2000;4:12–25 (in Russian). 
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 Updated values for material      are as follows: 

Additional changes in the corrector are needed.  

•  In the above expressions, the following quantities are still undefined: 
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Algorithm II uses the following approach*. 

  

Edge-velocities:  

Time steps:  

! 

"t+  #  tn+1$tn  ,

u
i+1 2
n+1/2 = u

i+1 2
n!1/2!(1 2)("t++"t–)(pi+1

n +qi+1
n ! pi

n!qi
n)/Mi+1/2,node

! 

Vi,cell
n+1  =  xi+1 2

n+1  "  xi"1 2
n+1

!
i
n+1 =  Mi,cell Vi,cell

n+1    !   "
i
n+1 = 1 !i

n+1

! 

"i
n+1 =  "i

n  #  (1 2) ( pi
n+1+qi

n+1 #pi
n #  qi

n )  ($i
n+1#$ i

n)

! 

pi
n+1

! 

xi+1 2
n+1  =  xi+1 2

n +  "t+#  ui +1 2
n+1/2  Edge positions:  

Cell volumes:  

Cell density.:  

Cell SIE:  

Cell pressure:  Full EOS call 

* Yanilkin, Yu.V., Study and Implementation of Multi-Material Pressure Relaxation Methods for 
Lagrangian Hydrodynamics, Los Alamos National Laboratory report LA-UR-10-06664, 2010. 
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 For multiple materials, Alg. II  changes similarly to Alg. I   
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Algorithm III is similar to the first algorithm*.	
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* Kamm J.R., Shashkov M.J., Rider, W.J., “A new pressure relaxation closure model for one-dimensional two-
material Lagrangian hydrodynamics, Eur. Phys. J. Web Conf. 2011, doi:10.1051/epjconf/201010000038. 
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①  Equal compressibility*:                          so 

With Alg. I, several closure models for pressure 
equilibration can be examined. 

②  Equal pressure†:    p1 = p2   and    q1 = q2  

•  Assume this is valid at the predictor step: 
•  Easy to implement; computationally efficient: 
•  Physically incorrect—with questionable results—in many situations. 
̶  E.g., cell with gas (highly compressible) and metal (low compressibility). 

! 

"# u$  =  "# u

•  This is the result of instantaneous (i.e., over ∆t) pressure equilibration. 
•  Leads to coupled equations:  one must solve for  ∆Eα, ∆V, pn+1/2  in: 

µ ! ("# un + "# un+1)Vn$t /(2$V)

! 

p =  " f#  p#

•  These imply expressions for updated SIE and volume fraction: ! 

"E# =  (pn+1/2 +qn) µ  "V#  ,

! 

"V  =  # "V$  ,
  

! 

pn+1/2 =  P ( M"
V"
n +#V"

,E" +#E"
M"

)

! 

"# u$
n+1/2  =  "# u n+1/2

where 

! 

"#
n+1/2  =  "#+($E# /M#) ,

! 

f"n+1/2  =  (V" +#V")/(V +#V)
•  Bakhrakh, S., Spiridonov, V., Shanin, A., “A method for computing gas-dynamic flows of inhomogeneous medium in Lagrangian-

Eulerian coordinates,” DAN SSR 1984;276:829–833 (in Russian; translated in Sov. Phys. Doklady 1984;29:443–445).  
† Harlow, F., "The particle-in-cell computing method for fluid dynamics," in Alder, B., Fernbach, S., Rotenberg, M., eds., Methods in 

Computational Physics, Vol. 3; New York: Academic Press; 1964, 319–343; Zharova, G.V., Yanilkin, Yu.V. "The EGAK code mixed 
cell pressure equilibration algorithm," VANT (Mathematical Modeling of Physical Processes) 1993;3:77–81 (in Russian).  
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Equal-increment models can also be formulated. 

④  Equal velocity increments†  (∆v): 

•  Assume that the general acoustic approximation is valid: 
③  Equal pressure increments* (∆P ): 

! 
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•  This leads to the following closed-form expressions: 
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dynamics,” VANT (Mathematical Modeling of Physical Processes) 2000;4:12–25 (in Russian). 

† Goncharov, E.A., Yanilkin, Yu.V., “New method for computations of thermodynamical states of the materials in 
mixed cells,” VANT (Mathematical Modeling of Physical Processes) 2004;3:16–30 (in Russian).  
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With Alg. II, a linearized Riemann problem* (LRP) used. 

⑤  Consider a Riemann problem in the mixed cell: 

•  Combining these equations gives updates for each material implies: 

•  From Algorithm II , the 
following update 
for the density follows:  
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•  Delov, V., Sadchikov, V.V., “Comparison of several models for computation of thermodynamical parameters for 
heterogeneous Lagrangian cells,” VANT (Mathematical Modeling of Physical Processes) 2005;1:57–70 (in Russian).  

•  Riemann invariants imply the well-known 
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u intfc
 n+1/2 =  (

! cs )1
nu1

n+1/2 + (! cs )2
nu2

n+1/2+ (p1
n–p2

n)
(! cs )1

n + (! cs )2
n

! 

u1

! 

u2

! 

uintfc
1 2 

! 

1
"

1
n+1#

1
"

1
n  =  $tM

1

("cs)2
n

("cs)1
n

+("cs)2
n (u

i
n+1/2

#u
i#1
n+1/2) +  

p
1
n
# p

2
n

("cs)1
n

+("cs)2
n

% 

& 

' 
' 
' 
' 

( 

) 

* 
* 
* 
* 

 

! 

1
"

2
n+1#

1
"

2
n  =  $tM

2

("cs)1
n

("cs)1
n

+("cs)2
n (u

i
n+1/2

#u
i#1
n+1/2) #  

p
1
n
# p

2
n

("cs)1
n

+("cs)2
n

% 

& 

' 
' 
' 
' 

( 

) 

* 
* 
* 
* 

 

12 



SAND2011-6003C  

The LRP* method also involves additional equations. 

•  From the velocity divergence equation, the volume change is: 

with  hn  a characteristic mesh size and        improves stability: 

•  Delov, V., Sadchikov, V.V., “Comparison of several models for computation of thermodynamical parameters for 
heterogeneous Lagrangian cells,” VANT (Mathematical Modeling of Physical Processes) 2005;1:57–70 (in Russian).  

•  From                           , the individual 
velocity divergences are obtained: 
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•  After some algebra, this implies that the energy update for 
material     is modified by an additional term:  
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Kamm & Shashkov* (KS) break the pressure  
equilibration assumption of Després† using 

local Riemann problem solutions. 
 Pressure relaxation in the mixed cell reduces to the 

solution of a minimization problem in         ,        ,        ,   
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† Després, B., Lagoutière, F., Prog. Comput. Fluid Dyn. 2007; 7:295–310. 
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 Complicated — and untested for realistic problems in multi-D. 
• Kamm J.R., Shashkov M.J., Comm. Comput. Phys., 2010; 7:927–976. 14 
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  Inspired by VNIIEF work, KSR used the linearized Riemann problem 
to update the materials’ volumes, volume fractions, and SIEs. 

Kamm, Shashkov & Rider* (KSR) also 
propose a linearized Riemann model. 
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•  Kamm J.R., Shashkov M.J., Rider, W.J., “A new pressure relaxation closure model for one-dimensional two-
material Lagrangian hydrodynamics, Eur. Phys. J. Web Conf. 2011, doi:10.1051/epjconf/201010000038. 
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 Tipton’s method is a widely used, robust multi-
material, pressure relaxation for multi-D. 
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 Assumption #2: There is a relaxation term added to each material’s 
pressure, so that these sums are all equal:  
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  Assumption #1: Predictor pressure based on adiabatic update: 
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 Assumption #3:  Volume changes add up correctly: 

! 

 "Vk
n+1/2

k
# = Vn+1/2 Total predictor volume change is 

known from standard algorithm  

! 

ˆ p n+1/2

! 

"Vk
n+1/2

Unknown 

Unknown 
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h h h h 2h 

The initialization of the pure-material and 
mixed-cell test problems are as follows.  

  The test problems were run similarly: 

h h h h h h 
2 1 

… … 

  

! 

xi  mix   

! 

xi  mix+1

! 

x1

! 

x2

! 

xN x

! 

xN x +1

Mixed 

Pure 

•  The fictitious mixed-cell 
interface is at the center of 
mixed cell of width 2h, with 
no explicit mass-matching. 

•  We compare these results 
with pure-material 
calculations that have 
the actual interface. 

… … 

  

! 

xi mix   

! 

xi mix+2

! 

x1

! 

x2

! 

xN x+2
  

! 

xi  mix+1

! 

xN x +1

•  Nx  zones on  xmin ≤ x < xmax  with  ∆xi = h , i ≠ imix  

•  One mixed cell for  i = imix  with  ∆ximix= 2h 
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 The first column is the “pure” 
material case: no mixed cell.  

 Other columns correspond to 
different pressure equilibration 
methods, with one mixed cell. 

  In the following 
slides, rows 
correspond to 
different under-
lying hydro 
algorithms 

The template for the test problem 
time-history results is as follows. 

I	
  Pure	
   I	
  ∆P	
   I	
  ∆v	
  

II	
  Pure	
   II	
  LRP	
  

III	
  Pure	
   KS	
   III	
  KSR	
   Tipton	
  

A
lg

or
ith

m
 I 

A
lg

or
ith

m
 II

 
A

lg
or

ith
m

 II
I 

“Pure”:  
No mixed 

cell 

“Pure”:  
No mixed 

cell 

“Pure”:  
No mixed 

cell 

Equal 
Velocity 

Increments 

Linearized 
Riemann 
Problem 

“Optimized” 
Riemann 
Problem 

Linearized 
Riemann 
Problem 

 
Tipton 

Equal 
Pressure 

Increments 

*TuQe,	
  E.,	
  The	
  Visual	
  Display	
  of	
  Quan2ta2ve	
  Informa2on,	
  Graphics	
  Press,	
  Cheshire,	
  CT,	
  2007.	
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Test Problem #1: Modified Sod Shock Tube  

 Modified Sod initial conditions: 

 Final-time snapshots show the standard shock-tube evolution. 
 

(1.0,    2.0, 0.0, 2.0),     0 ≤ x < 0.5,  Material 1 
(0.125,0.1, 0.0, 1.4),  0.5 < x ≤ 1.0,  Material 2 

tfinal =	
  0.2	
  

De
ns
ity

	
   Error	
  

SI
E	
  

Error	
  

Pr
es
su
re
	
  

Error	
  

Ve
lo
ci
ty
	
   Error	
  

“Closed-­‐form”	
  –	
  Computed	
  =	
  Error	
  

10
0	
  
ce
lls
	
  

Posi(on	
   Posi(on	
  

Posi(on	
  Posi(on	
  

  In the following slides, we 
present time-histories in the 
single mixed cell. 

   Results for all of the methods 
mentioned are presented. 
•  All methods have been 

demonstrated to be about  
first-order accurate on this 
problem. 
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 All methods exhibit pressure 
oscillations, also. 

 Among mixed cell methods, 
KSR and Tipton look 
heuristically the “nicest.” 

 All methods: 
•  Equilibrate 
•  Obtain the 

correct final 
pressure 

Modified Sod Pressure History 
P

re
ss

ur
e 

P
re

ss
ur

e 

Material 1 

Material 2 

I	
  Pure	
   I	
  ∆P	
   I	
  ∆v	
  

II	
  Pure	
   II	
  LRP	
  

KS	
   III	
  KSR	
   Tipton	
  

P
re

ss
ur

e 

III	
  Pure	
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 All mixed cell methods 
undershoot the final values. 

 Which method looks heuristically 
the “best”? 

 The “pure” 
methods come 
closest to the 
correct values at 
the final time.  

Modified Sod Density History 
D

en
si

ty
 

D
en

si
ty

 

Material 1 

Material 2 

I	
  Pure	
   I	
  ∆P	
   I	
  ∆v	
  

II	
  Pure	
   II	
  LRP	
  

KS	
   III	
  KSR	
   Tipton	
  

D
en

si
ty

 

III	
  Pure	
  

21 



SAND2011-6003C  

 For material 2, both linearized 
Riemann problem methods 
overshoot significantly. 

 Tipton overshoots a little, too. 
 KS heuristically the “best”? 

 For material 1, 
all methods 
perform about 
equally well, 
and get the 
correct result. 

Modified Sod Specific Internal Energy History 
S

IE
 

S
IE

 

Material 1 

Material 2 

I	
  Pure	
   I	
  ∆P	
   I	
  ∆v	
  

II	
  Pure	
   II	
  LRP	
  

KS	
   III	
  KSR	
   Tipton	
  

S
IE

 

III	
  Pure	
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Test Problem #2: the Water-Air Shock Tube 

 Water-air shock tube* initial conditions: 

 Final-time snapshots show the stronger shock-tube evolution. 
 

  In the following slides, we 
present time-histories in the 
single mixed cell. 

 Results for all of the methods 
mentioned are presented. 
•  All methods have been 

demonstrated to be about  
first-order accurate on this 
problem. 

 *	
  R.	
  Saurel	
  &	
  R.	
  Abgrall,	
  “A	
  Mul(phase	
  Godunov	
  Method	
  for	
  
Compressible	
  Mul(fluid	
  and	
  Mul(phase	
  Flows,”	
  J.	
  Comput.	
  Phys.	
  
1999;	
  150:425–467.	
  

(1.e+3,1.e+9,0.0,4.4,6.e+8),  0≤x<0.7, Material 1 

(5.e+1,1.e+6,0.0,1.4,0.0),   0.7<x≤1.0, Material 2 tfinal = 2.2e-4 

“Closed-­‐form”	
  –	
  Computed	
  =	
  Error	
  

25
0 
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De
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   Error	
  

SI
E	
  

Error	
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Error	
  

Ve
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ci
ty
	
   Error	
  

Posi(on	
   Posi(on	
  

Posi(on	
  Posi(on	
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 Some pure and mixed cell 
methods have negative pressure. 

 The mixed cell methods based 
on Riemann problems have 
no negative pressure. 

 All methods: 
•  Equilibrate 
•  Obtain the 

correct final 
pressure 

Water-Air Pressure History 
P

re
ss

ur
e 

P
re

ss
ur

e 
P
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ss

ur
e 

Nega2ve	
  
pressure	
  

Nega2ve	
  
pressure	
  

Nega2ve	
  
pressure	
  

Nega2ve	
  
pressure	
  

Posi2ve	
  
pressure	
  

Posi2ve	
  
pressure	
  

Posi2ve	
  
pressure	
  

Material 1 

Material 2 

I	
  Pure	
   I	
  ∆P	
   I	
  ∆v	
  

II	
  Pure	
   II	
  LRP	
  

III	
  Pure	
   KS	
   III	
  KSR	
   Tipton	
  

Air 

H20 

Posi2ve	
  
pressure	
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 For material 2, mixed cell methods 
consistently undershoot final 
values more than pure methods. 

 Which method looks heuristically 
the “best”? 

 The “pure” 
methods come 
closest to the 
correct values at 
the final time.  

Water-Air Density History 
D

en
si

ty
 

D
en

si
ty

 

Material 1 

Material 2 

I	
  Pure	
   I	
  ∆P	
   I	
  ∆v	
  

II	
  Pure	
   II	
  LRP	
  

KS	
   III	
  KSR	
   Tipton	
  

D
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III	
  Pure	
  

Air 

H20 
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 For material 2, both linearized 
Riemann problem methods 
overshoot seriously. 

•  Tipton, ∆P overshoot material 2. 
•  KSR has volume fraction “flip.” 

 For material 1, 
all methods are 
about the same, 
close to the 
exact final value. 

Water-Air Specific Internal Energy History 
S

IE
 

S
IE

 
S

IE
 

Material 1 

Material 2 

I	
  Pure	
   I	
  ∆P	
   I	
  ∆v	
  

II	
  Pure	
   II	
  LRP	
  

III	
  Pure	
   KS	
   III	
  KSR	
   Tipton	
  

Air 

H20 

26 



SAND2011-6003C  

•  Full Riemann problem in mixed cell → “optimal” pressure of each material. 
–  Physics-based.      Complicated.  2-D? Strength? 

Summary of these results 

  Kamm & Shashkov (KS):  

  Pure Material:  

  Tipton: 

•  Basic algorithm with no mixed cell; straightforward for ideal problems. 
–  No mixed cell assumptions.   No mixed cell assumptions. +	
  	
   –	
  	
  

•  Relaxation term → equal pressures: solve exactly for this term. 
–  Robust, fast, 2-D & strength.   Rough & ready assumptions, good results. 

+	
  	
   –	
  	
  

+	
  	
   –	
  	
  

•  Linearized Riemann problem in mixed cell is used as conservative closure. 
–  “Physics-based”, 2-D.    Questionable SIE, volume fractions.  

  Kamm, Shashkov & Rider (KSR):  

+	
  	
   –	
  	
  

  Equal ∆P:  
•  Acoustic approximation, assumed to be equal for all materials. 
–  Closed-form expressions, 2-D.    Sometimes oscillatory, less accurate SIE. +	
  	
   –	
  	
  

  Equal ∆v:  
•  Single velocity → equal velocity increments is a plausible assumption. 
–  Closed-form expressions, 2-D.    Sometimes oscillatory, negative pressure. +	
  	
   –	
  	
  

  Linearized Riemann Problem (LRP):  
•  Linearized Riemann problem in mixed cell is used as conservative closure. 
–  “Physics-based”, 2-D.    Questionable SIE, volume fractions. +	
  	
   –	
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Conclusions 

 Multi-material Lagrangian cells remain an important issue. 
• The 1-D case allows rigorous testing of closure models. 

 There is no clear “winner” among the methods 
•  In some aspects, simple methods look good (e.g., ∆P) 
•  In other aspects, Riemann-based methods do not (e.g., SIE) 
•  Other problems?  Strong expansions, stronger shocks, near-void. 

 Several different closure models were described. 
•  Some are simple & fast (e.g., equal compressibility), while 

others are complex & slow (e.g., using the full Riemann problem). 
•  Unfortunately, these methods were not all tested with exactly 

the same underlying hydro integration scheme.  

 Many of these approaches can be extended: 
•  ≥ 2 materials, with some assumptions about material ordering. 
•  2-D and 3-D:  VNIIEF methods (Yanilkin et al.) and KSR (Harrison et al.). 

 Open issues: (1) 2-D comparisons? (2) Entropy... 
28 
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